a(n+1)+2=2an+4=2(an+2)
所以an+2是等比数列,q=2
则an+2=(a1+2)*2^(n-1)=3*2^(n-1)
所以an=-2+3*2^(n-1)
Sn=-2-2-2-……-2+3*[1+2+……+2^(n-1)]
=-2n+3*1*(1-2^n)/(1-2)
=-2n+3*(2^n-1)
a(n+1)+2=2an+4=2(an+2)
q=2
an+2=(a1+2)*2^(n-1)=3*2^(n-1)
an=-2+3*2^(n-1)
Sn=-2-2-2-……-2+3*[1+2+……+2^(n-1)]
=-2n+3*1*(1-2^n)/(1-2)
=-2n+3*(2^n-1)
an+1=2an+2=an+1+2=2(an+2)
所以{an+2}为等比数列
an+2=3.2^n-1
an=-2+3.2^n-1
sn=a1+.......an=-2n+3(1+....+2^n-1)=-2n-3+3.2^n
a(n+1)+2=2*(an+2)
an=3*2(n-1)-2
sn=-2n+3*(2^n-1)