设F(X)=X^3 - 2eX^2+mX - ln X ,记G(X)=F(X)/X ,G(X)至少有一个零点 ,求m范围
解析:∵F(X)=X^3-2eX^2+mX-lnX ,记G(X)=F(X)/X
则g(X)=X^2-2eX+m-lnX/x
令G ‘(X)=2X-2e+(lnX-1)/x^2=0==>x=e
G ‘’(X)=(3x-2xlnX)/x^4==> G ‘’(e)=1/e^3>0
∴函数g(X)在x=e处取极小值g(e)=m-e^2-1/e
∵G(X)至少有一个零点
∴g(e)=m-e^2-1/e<=0
m范围为m<=e^2+1/e