已知α为锐角,cos(α+π⼀4)=√5⼀5. (1)求tan(α+π⼀4)的值 (2)求sin

2025-05-10 16:11:48
推荐回答(5个)
回答1:

α为锐角,而cos(α+π/4)>0,因此可知α<π/4。
易知sin(α+π/4)=2√5/5,因此由倍角公式得sin(2α+π/2)=2*(2√5/5)*(√5/5)=4/5。而π/2<2α+π/2<π,因此cos(2α+π/2)=-3/5,再由半角公式可知tan(α+π/4)=sin(2α+π/2)/(1+cos(2α+π/2))=2。
由sin(2α+π/2)=4/5可知sin2α=4/5,cos2α=3/5,因此由和角公式可知sin(2α+π/3)=2/5+3√3/10。

回答2:

sin(α+π/4)=√[1-cos²(α+π/4)]=2√5/5
tan(α+π/4)=sin(α+π/4)/cos(α+π/4)=2
∵n(α+π/4)=sinαcosπ/4+cosαsinπ/4=√2/2(sinα+cosα)=2√5/5
∴sinα+cosα=2√10/5,∵(sinα+cosα)²=sin²α+cos²α+2sinαcosα=1+sin2α=8/5,∴sin2α=3/5,∴cos2α=√(1-sin²2α)=4/5,∴sin(2α+π/3)=sin2αcosπ/3+cos2αsinπ/3=3/5 · 1/2 + 4/5 · √3/2=3/10 + 2√3/5

回答3:

解:(1)∵cos(α+π/4)=√5/5
∴ sin(α+π/4)=2√5/5或-2√/5
又∵α为锐角,即α∈(0,π/2)
∴α+π/4∈(π/4,3π/4)
∴sin(α+π/4)=2√5/5
∴tan(α+π/4)=sin(α+π/4)÷cos(α+π/4)
=2√5/5 ÷ √5/5
=2
(2)还在想……
∵sin2α=2sinα*cosα=2*(2√5/5)*(√5/5)=4/5
cos2α=2(cosα)²-1=-3/5
∴sin(2α+π/3)=sin2α*cosπ/3+cos2α*sinπ/3
=4/5*1/2+(-3/5)*(√3/2)
=2/5-3√3/10
=(4-3√3)/10 ………………(这不也可以不写,保留上式结果就可)

回答4:

0<α<π/2
π/4<α+π/4<3π/4
cos(α+π/4)=√5/5
sin(α+π/4)=2√5/5
cosα-sinα=√10/5.......(1)
cosα+sinα=2√10/5.......(2)
(1)*(2)得
cos^2α-sin^2α=4/5
cos2α=cos^2α-sin^2α=4/5
cos2α=4/5
sin2α=3/5
tan(α+π/4)=sin(α+π/4)/cos(α+π/4)=2√5/5/√5/5=2
tan(α+π/4)=2
sin(2α+π/3)=1/2sin2α+√3/2cos2α
=1/2*3/5+√3/2*4/5
=(3+4√3)/10
sin(2α+π/3)=(3+4√3)/10

回答5: