(1).(1/a)+(1/b)
通分后为:(b+a)/ab=2/-5
(2).(a/b)+(b/a)
通分后为:(a^2+b^2)/ab
=(a^2+2ab+b^2-2ab)/ab
=[(a+b)^2-2ab]/ab
=14/-5
1).(1/a)+(1/b)
=(b+a)/ab
=-2/5
(2).(a/b)+(b/a)
=(a²+b²)/ab
=((a+b)²-2ab)/ab
=14/5
(1)原式=(a+b)/ab=-2/5
(2)原式=(a^2+b^2)/ab=[(a+b)^2-2ab]/ab=[4+10]/(-5)=-14/5
(1).(1/a)+(1/b)
=(a+b)/ab
=-2/5
(2).(a/b)+(b/a)
=(axa+bxb)/ab
=[(a+b)(a+b)-2ab]/ab
=-14/5
解:(1)1/a+1/b=(a+b)/ab=-2/5
(2) a^2+b^2=(a+b)^2-2ab=2^2-2*(-5)=14
a/b+b/a=(a^2+b^2)/ab=-14/5