(Ⅰ)证明:∵O、D分别为AC、PC中点,∴OD∥PA
∵PA∥平面PAB,
∴OD∥平面PAB---------(4分)
(Ⅱ)解:连接PO,OB
∵PA=PC,∴PO⊥AC
∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC
∴PO⊥平面ABC
∴∠PBO是直线PB与平面ABC所成角
设AB=BC=PA=PC=1,则
∵AB⊥BC,∴0B=0C=
PO=
2
2
=
1-(
)2
2
2
2
2
∴tan∠PBO=
=1,∴∠PBO=45°PO OB
∴PB与平面ABC所成角为45°---------(6分)