(1)由an+1=
,得2an
an+2
=1 an+1
=
an+2 2an
+1 2
,即1 an
?1 an+1
=1 an
.1 2
∴数列{
}是首项为1 an
=1 a1
,公差为3 2
的等差数列.1 2
∴
=1 an
+(n?1)?3 2
=1 2
,即an=n+2 2
.2 n+2
∵b1+2b2+22b3+…+2n-1bn=n ①,
∴b1+2b2+22b3+…+2n-2bn-1=n-1 (n≥2)②.
①-②得2n-1bn=1,即bn=
(n≥2).1 2n?1
由①知,b1=1也满足上式,故bn=
;1 2n?1
(2)由(1)知,
=bn an
,下面用“错位相减法”求Tn.n+2 2n
Tn=
+3 2
+4 22
+…+5 23
③,n+2 2n
Tn=1 2
+3 22
+…+4 23
+n+1 2n
④.n+2 2n+1
③-④得
Tn=1 2
+3 2
+1 22
+…+1 23
?1 2n
=2?n+2 2n+1
,n+4 2n+1
∴Tn=4?
<4.n+4 2n
又
>0,则数列{Tn}单调递增,故Tn≥T1=an bn
>1,从而1<Tn<4.3 2
因此,存在正整数m=1、M=4且M-m=3,使得m<Tm<M对一切n∈N*恒成立.