(1)连结EO、OA,
∵E、O分别为B1C、BC的中点,∴EO∥BB1,EO=BB1
又∵AA1、BB1为圆柱OO1的母线,
∴AA1∥BB1、AA1=BB1,可得四边形AA1B1B是平行四边形,
∵平行四边形AA1B1B中,DA∥BB1,DA=BB1,
∴DA∥EO,且DA=EO
四边形AOED是平行四边形,可得DE∥OA
∵DE?面ABC,OA?面ABC,∴DE∥面ABC;…(4分)
(2)∵AA1、BB1为圆柱OO1的母线,
∴四边形AA1B1B是平行四边形,可得AB∥A1B1
∵AA1⊥圆O所在的平面,AB?圆O所在的平面,∴AA1⊥AB,
又∵BC是底面圆O的直径,∴AB⊥AC,
∵AC∩AA1=A,AC、AA1?面A1AC,AB⊥面A1AC,
∵AB∥A1B1,∴A1B1⊥面A1AC,
∵A1B1?面A1B1C,∴面A1B1C⊥面A1AC;…(9分)
(3)由题意,DE⊥面CBB1,由(1)知DE∥OA,
∴OA⊥面CBB1,∴结合BC?面CBB1,可得AO⊥BC,得AC=AB.
∵AB⊥AC且AA1⊥AC,AB、AA1是平面AA1B1B内的相交直线,
∴AC⊥平面AA1B1B,即AC为四棱锥C-ABB1A1的高.
设圆柱高为h,底半径为r,则V圆柱=πr2h,V四棱锥=(r)?(r)h=hr2,
∴四棱锥C-ABB1A1与圆柱OO1的体积比为=.…(14分)