(2013?东莞一模)如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥

2025-05-08 11:10:53
推荐回答(1个)
回答1:

(1)连结EO、OA,
∵E、O分别为B1C、BC的中点,∴EO∥BB1,EO=

1
2
BB1
又∵AA1、BB1为圆柱OO1的母线,
∴AA1∥BB1、AA1=BB1,可得四边形AA1B1B是平行四边形,
∵平行四边形AA1B1B中,DA∥BB1,DA=
1
2
BB1
∴DA∥EO,且DA=EO
四边形AOED是平行四边形,可得DE∥OA
∵DE?面ABC,OA?面ABC,∴DE∥面ABC;…(4分)
(2)∵AA1、BB1为圆柱OO1的母线,
∴四边形AA1B1B是平行四边形,可得AB∥A1B1
∵AA1⊥圆O所在的平面,AB?圆O所在的平面,∴AA1⊥AB,
又∵BC是底面圆O的直径,∴AB⊥AC,
∵AC∩AA1=A,AC、AA1?面A1AC,AB⊥面A1AC,
∵AB∥A1B1,∴A1B1⊥面A1AC,
∵A1B1?面A1B1C,∴面A1B1C⊥面A1AC;…(9分)
(3)由题意,DE⊥面CBB1,由(1)知DE∥OA,
∴OA⊥面CBB1,∴结合BC?面CBB1,可得AO⊥BC,得AC=AB.
∵AB⊥AC且AA1⊥AC,AB、AA1是平面AA1B1B内的相交直线,
∴AC⊥平面AA1B1B,即AC为四棱锥C-ABB1A1的高.
设圆柱高为h,底半径为r,则V圆柱=πr2h,V四棱锥=
1
3
2
r
)?(
2
r
)h=
2
3
hr2

∴四棱锥C-ABB1A1与圆柱OO1的体积比为
2
3
hr2
πr2h
=
2
.…(14分)