高一函数数学大题求解,在线等!!

要详细过程的,求解呀
2025-05-12 16:08:31
推荐回答(3个)
回答1:

解:f(x)=sin2x+√3cos2x=2sin(2x+π/3)
所以最小正周期T=2π/w=2π/2=π
当2kπ-π/2≤2x+π/3≤2kπ+π/2时
解得:kπ-5π/12≤x≤kπ+π/12为增函数
当2kπ+π/2≤2x+π/3≤2kπ+3π/2时
解得:kπ+π/12≤x≤kπ+7π/12为减函数
又x为[0,π/2]时,所以2x+π/3为[π/3,4π/3]
当2x+π/3=π/2,即x=π/12时 f(x)取得最大值为2
当2x+π/3=4π/3,即x=π/2时 f(x)取得最小值为-√3

回答2:

原式=2sin(2x+π/3)
最小正周期为2π/2=π
单增区间为[-5π/12 +kπ ,π/12 +kπ]
最大值为2 x=π/12,最小值为 -根号下3 x=π/2

回答3:

f(x)=2(sin2x*0.5+cos2x*sqrt(3)/2)=2Sin(2x+pi/3) 最小正周期pi,由2k*pi+pi/2>=2x+pi/3>=2kpi-pi/2,可知kpi-5/12pi<=x<=kpi+pi/12为单调增区间K为整数。在4pi/3>=2x+pi/3>=pi/3 ,当2x+pi/3=pi/2最大,2x+pi/3=4pi/3最小。最大值为2,最小值为-sqrt(3).