解答:解:(1)证明:连接BD.
在长方体AC1中,对角线BD∥B1D1.又∵E、F为棱AD、AB的中点,∴EF∥BD.∴EF∥B1D1.又B1D1⊥平面CB1D1,EF?平面CB1D1,∴EF∥平面CB1D1.
(2)∵在长方体AC1中,AA1⊥平面A1B1C1D1,而B1D1⊥平面A1B1C1D1,∴AA1⊥B1D1.
又∵在正方形A1B1C1D1中,A1C1⊥B1D1,∴B1D1⊥平面CAA1C1.
又∵B1D1平面CB1D1,∴平面CAA1C1⊥平面CB1D1.
(3)最小值为3
2
∴如图,将正方体六个面展开,从图中F到F,两点之间线段最短,
而且依次经过棱BB1、B1C1、C1D1、D1D、DA上的中点,所求的最小值为3
2