解:
f()=-2asin^2x+2√3asinxcosx+a+b
=a(1-2sin^2x)+√3asin2x+b
=acos2x+√3asin2x+b
=2a(1/2cos2x+√3/2sin2x)+b
=2asin(2x+π/6)+b
f(x)=-2a(sinx)^2+2√3asinxcosx+a+b
=√3asin2x+a[1-2(sinx)^2]+b
=√3asin2x+acos2x+b
=2a[(√3/2)sin2x+(1/2)cos2x]+b
=2a(sin2xcosπ/6+cos2xsinπ/6)+b
=2asin(2x+π/6)+b
f(x)=a(1-2sin²x)+2a√3sinxcosx+b
=acos2x+a√3sin2x+b
=2a(1/2*cos2x+√3/2*sin2x)+b
=2a(sin30°cos2x+cos30°sin2x)+b
=2asin(2x+30°)+b
f(x)=-2asin^2x+2√3asinxcosx+a+b
=a(1-2sin^2x)+√3asin2x+b
=acos2x+√3asin2x+b
=2a(1/2cos2x+√3/2sin2x)+b
=2asin(2x+π/6)+b
原式=acos2x+√3asin2x+b
=2a[(√3/2)sin2x+(1/2)cos2x]+b
=2asin(2x+π/6)+b