高一数学问题 求这一步的详细过程(怎么变形的)附图 在线等

2025-05-17 00:23:14
推荐回答(6个)
回答1:

解:
f()=-2asin^2x+2√3asinxcosx+a+b
=a(1-2sin^2x)+√3asin2x+b
=acos2x+√3asin2x+b
=2a(1/2cos2x+√3/2sin2x)+b
=2asin(2x+π/6)+b

回答2:

f(x)=-2a(sinx)^2+2√3asinxcosx+a+b

=√3asin2x+a[1-2(sinx)^2]+b

=√3asin2x+acos2x+b

=2a[(√3/2)sin2x+(1/2)cos2x]+b

=2a(sin2xcosπ/6+cos2xsinπ/6)+b

=2asin(2x+π/6)+b

回答3:

f(x)=a(1-2sin²x)+2a√3sinxcosx+b
=acos2x+a√3sin2x+b
=2a(1/2*cos2x+√3/2*sin2x)+b
=2a(sin30°cos2x+cos30°sin2x)+b
=2asin(2x+30°)+b

回答4:

回答5:

f(x)=-2asin^2x+2√3asinxcosx+a+b
=a(1-2sin^2x)+√3asin2x+b
=acos2x+√3asin2x+b
=2a(1/2cos2x+√3/2sin2x)+b
=2asin(2x+π/6)+b

回答6:

原式=acos2x+√3asin2x+b
=2a[(√3/2)sin2x+(1/2)cos2x]+b
=2asin(2x+π/6)+b