帮忙解一道初中数学题,要有具体的解法过程。

2025-05-11 09:17:07
推荐回答(6个)
回答1:

设抛物线与x轴的交点A(x1,0) B(x2,0) 抛物线上一点P(x0,y0)
因为直角,直线AC,直线BC的斜率积为-1
k1*k2=-1
(y0/(x0-x1))*(y0/(x0-x2))=-1
化 (x0-x1)*(x0-x2)+y0^2=0
展开 x0^2-(x1+x2)*x0+x1*x2+y0^2=0 (**)
A(x1,0) B(x2,0) 是抛物线y=ax^2+bx+c与x轴交点
即x1,x2是方程ax^2+bx+c=0的两个根
韦达定理x1+ x2=-b/a x1*x2=c/a
代入(**) x0^2+b/a*x0+c/a+y0^2=0
两边同时乘以a ax0^2+bx0+c+ay0^2=0 (##)
因为P满足y=ax^2+bx+c
所以y0=ax0^2+bx0+c
所以代入(##)y0+ay0^2=0
y0*(1+ay0)=0
因为P异于A,B,所以y0不为0
所以y0=-1/a

选A 与a有关

回答2:

简单点来想,其实 设抛物线跟坐标轴的交点是A B ABP构成直角三角形的话, P肯定是在AB为直径的圆上面 ,不难知道 如果P在抛物线顶点 那肯定是等腰三角形, 当是等腰直角三角形的时候 那么就只有一个点, 无论开口向上还是向下, 要构成这个图形只能由抛物线的开口大小决定,抛物线开口大小取决于a的绝对值,另外 如果不是等腰直角三角形,那么就有2个点符合,而且这2个点的纵坐标是一样的。 这其实也是由抛物线的开口大小决定。

这种解法没有计算,但是其实是对抛物线性质的一种理解,抛物线的形状 都是由a决定的,b c 不过是对抛物线的平移,想明白这点,可以不用通过计算就得出答案

另外一条思路就是解析几何的方向,通过韦达定理,斜率公式求出坐标,但这是高中的范畴了

回答3:

这道题涉及高中数学必修二第三章的斜率,所以推荐答案才让你看不懂
而你是初中生不能用这种方法,我们可以设交点为ab,那么就是Δabp为直角三角形是直角三角形,而p的纵坐标是斜边上的高,而高就与面积和ab有关,而因为是直角三角形的勾股定理,所以两条直角边与ab有关,那么p的纵坐标就与ab有关,而横坐标是是一条直角边和纵坐标组成的直角三角形中,所以还是与ab有关,而ab的大小(可以看做抛物线的开口大小)与a的绝对值有关,所以与a有关 ><有点一派胡言,现在教你应该我们理科最常用也最简单的方法,代特殊值就去,分别让abc改变,到最后可得出p与a有关

回答4:

抛物线和x有两个交点。这就是图中直角三角形的斜边。换句话说,三角形的斜边只能在x轴上。那么,p点就不可能在x轴上。那么我们可以移动y轴,让三角形的斜边的高在Y轴上。它的坐标会变化。X轴变为0,y轴只与C有关。

回答5:

P点的纵坐标为-1/a,横坐标倒没有发现什么特别之处
我想选择A;
希望对你有帮助!

回答6:

解:求出抛物线与x轴的交点X1,X2,P(m,am^2+bm+c);
(PX1)^2+PX2)^2=(X2-X1)^2