先计算
F(x) = (-1/n)∫[0,x]f(xⁿ-tⁿ)d(xⁿ-tⁿ)
= (1/n)∫[0,xⁿ]f(u)d(u) (u=xⁿ-tⁿ),
因此
lim(x→0) F(x)/x²ⁿ (0/0)
= lim(x→0) F'(x)/(2n)x²ⁿ﹣¹
= lim(x→0) n(xⁿ﹣¹)f(xⁿ)/(2n)x²ⁿ﹣¹
= (1/2)*lim(x→0) [f(xⁿ)-f(0)]/xⁿ
= (1/2)f'(0)。
F(x)=1/n∫{0,x}f(x^n-t^n)d(t^n)
=1/n∫{x^n,0}f(z)*(-1)d(z) 令x^n-t^n=z,则t^n=x^n-z
=1/n∫{0,x^n}f(z)d(z)
lim{x→0}F(x)/x^(2n)=lim{x→0}[1/n*f(x^n)*n*x^(n-1)]/[2*n*x^(2n-1)]
=lim{x→0}f(x^n)/(2*n*x^n)
=lim{x→0}[f(x^n)-f(0)/[2*n*(x^n-0)]
=1/(2n)*lim{x→0}[f(x^n)-f(0)/(x^n-0)
=1/(2n)*f'(0)