三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
和差化积
sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinαsinβ=-[cos(α+β)-cos(α-β)] /2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
更多见
上面是本人高中用过的,其他就基本没用了。
(对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC )
1+(tanα)^2=(secα)^2
1+(cotα)^2=(cscα)^2
(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
cotAcotB+cotAcotC+cotBcotC=1
cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
万能公式为: 设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)
在RT三角形ABC中,SINA=COSC,tanC×tanA=1.剩下的需要在题目中摸索,背公式是没用的