一个高数题,关于微分方程的,希望有高手给我详细解答。。。

2025-05-11 03:07:05
推荐回答(3个)
回答1:

由牛顿第二定律
mx''=-kx
x''+ω²x=0,(ω²=k/m)
特征方程r²+ω²=0的根为r=±ωi
通解为x=C1cosωx+C2sinωx
不过按照习惯我们总可以写成如下等价的形式
x=Acos(ωx+α)
这是熟悉的简谐振动方程,其周期为
T=2π/ω=2π√(m/k)=0.283701s

回答2:

mx''+kx=0
m=2kg
k=9.8N/cm
Wn=√(k/m)=√(9.8N/2kg)=√[9.8×100 kgcm/(2s²cmkg)]
= √490 / s
= 22.13.... 弧度/每秒
振动周期为:T=2π/Wn= 0.2838秒

回答3:

T=2π/ω=2π/[7*根10]