已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.(Ⅰ)求数列{an}的通项an;(Ⅱ)设bn=32×2an+1n(n

2025-05-12 15:05:42
推荐回答(1个)
回答1:

(Ⅰ)设等差数列{an}首项为a1,公差为d,
由题意,得

a1+2d=5
15a1+
15×14
2
d=225

解得
a1=1
d=2

∴an=2n-1;
(Ⅱ)bn
3
2
×2an+
1
n(n+1)
=
3
2
×22n-1+(
1
n
-
1
n+1
),
Tn=b1+b2+b3+…+bn=
3
2
×(21+23+25+…+22n-1)+(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=
3
2
2(1?2n