(2012?安徽一模)如图所示,倾角为θ的光滑斜面ABC放在水平面上,劲度系数分别为k1、k2的两个轻弹簧沿斜

2025-05-14 06:56:14
推荐回答(1个)
回答1:

没旋转时,两弹簧均处于伸长状态,两弹簧伸长量分别为x1、x2
由平衡条件可知k2x2=m2gsinθ,解得:x2=

m2gsinθ
k2

k2x2+m1gsinθ=k1x1
解得:x1=
(m1+m2)gsinθ
k1

旋转后,两弹簧均处于压缩状态,压缩量为x1′,x2
m2gcosθ=k2x2
解得:x2′=
m2gcosθ
k2

(m1+m2)gcosθ=k1x1′
解得:x1′=
(m1+m2)gcosθ
k1

所以m1移动的距离d1=x1+x1′=
(m1+m2)g
k1
(sinθ+cosθ)

m2移动的距离d2=x2+x2′+d=
(m1+m2)g
k1
(sinθ+cosθ)+
m2g
k2
(sinθ+cosθ)
答:m1、m2沿斜面移动的距离各为
(m1+m2)g
k1
(sinθ+cosθ)
(m1+m2)g
k1
(sinθ+cosθ)+
m2g
k2
(sinθ+cosθ)