(2009?大兴区一模)已知:如图1,四边形ABCD内接于⊙O,AC⊥BD于点P,OE⊥AB于点E,F为BC延长线上一点.

2025-05-08 11:44:33
推荐回答(1个)
回答1:

(1)证明:∵∠DCF是△BDC的外角,
∴∠DCF=∠CBD+∠CDB.
∵∠CBD=∠DAC,∠CDB=∠CAB,
∴∠DCF=∠DAB.(1分)

(2)解:连接AO并延长交⊙O于点G,连接GB,
∵AG过O点,为圆O直径,
∴∠ABG=90°.
∵OE⊥AB于点E,
∴E为AB中点.
OE=

1
2
BG.
∵AC⊥BD,
∴∠APD=90°.
∴∠DAP+∠ADP=90°.
∵∠BAG+∠G=90°.且∠ADP=∠G,
∴∠DAP=∠BAG.
∴CD=BG.
OE=
1
2
CD
.(4分)

(3)解:(2)的结论成立.
证明:连接AO并延长交⊙O于点G,连接GB,
∴∠ABG=90°.
∵OE⊥AB于点E,
∴E为AB中点.
OE=
1
2
BG

由(1)证明可知,∠PDA=∠G,
∴∠PAD=∠BAG.
∴CD=BG.
OE=
1
2
CD
.(7分)