在等比数列{an}(n∈N+)中,a1>1,公比q>0.设bn=log2an,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b

2025-05-12 17:57:21
推荐回答(1个)
回答1:

(1)证明:由题意得,bn=log2an
∴bn+1-bn=log2an+1-log2an
=

log
=log2q为常数,
∴数列{bn}是以公差d=log2q等差数列.
(2)解:由(1)和b1+b3+b5=6,
得3b3=6,即b3=2,
∴b3=log2a3=2,得b3=2,
∵a1>1,∴b1=log2a1>0.
∵b1b3b5=0,∴b5=0,即log2a5=0,得a5=1.
q2
a5
a3
=
1
4
,由q>0得q=
1
2

由a3=a1q2=4得,a1=16,
∴an=a1q,n-1=25-n(n∈N*).
由b1=log2a1=log216=4,b3=2得,公差d=-1,
∴Sn=nb1+
n(n?1)
2
×d
=4n-
n(n?1)
2
=
9n?n2
2

故{bn}的前n项和Sn=
9n?n2
2