证明:∵△ABC中AB=AC,∴∠B=∠C又∵D是BC中点,∴BD=DC又∵∠BED=∠CFD=90°根据角角边可得△BED全等于△CFD,所以证明DE=DF
∵AB=AC∴∵D是BC中点∴BD=CD∵DE⊥AB,DF⊥AC,那么BD=CD∴△BDE≌△CDF(AAS)∴DE=DF
ab=ac,所以∠B=∠C,DE⊥AB,DF⊥AC,∠BED=∠DFC=90°BD=BC,所以△BED≌△CFD,所以DE=DF