已知x-y=m,y-z=-3,求x^2+y^2+z^2-xy-yz-zx的最小值

帮帮忙吧:已知x-y=m,y-z=-3,求x^2+y^2+z^2-xy-yz-zx的最小值
2025-05-09 22:43:00
推荐回答(1个)
回答1:

设A=x^2+y^2+z^2-xy-yz-zx;
2A=2x^2+2y^2+2z^2-2xy-2yz-2zx;
2A=(x-y)^2+(y-z)^2+(z-x)^2
=m^2+3^2+(m-3)^2
=m^2+9+m^2-6m+9
=2m^2-6m+18
所以A=m^2-6m+9+3m=(m-3)^2+3m
(m-3)最小值为0;所以最小值为3m