设1/[(t-1)(t+1)^2] ≡ A/(t-1) + B/(t+1) + C/(t+1)^2=>1 ≡ A(t+1)^2 + B(t-1)(t+1) + C(t-1)t=14A =1A= 1/4t=-1-2C = 1C= -1/2coef. of t^2A+B=01/4+B=0B=-1/41/[(t-1)(t+1)^2] ≡ (1/4)/(t-1) - (1/4)/(t+1) - (1/2)/(t+1)^2