一道高中数学难题 高手进

2025-05-15 22:26:03
推荐回答(3个)
回答1:

设k=(x^2-xsinθ+1/2)/(x^2-xcosθ+1/2)
化简
(k-1)x^2-(kcosθ-sinθ)x+k/2-1/2=0
当k-1不为0时化为
x^2-(kcosθ-sinθ)x/(k-1)+1/2=0
因为x>0
判别式=(kcosθ-sinθ)^2/(k-1)^2-2>=0
(kcosθ-sinθ)/(k-1)>根号2
(kcosθ-sinθ)/(k-1)<-根号2
就这样化简吧,根据θ确定k的值

回答2:

y=f(x)
x^2-xsinθ+1/2=yx^2-yxcosθ+y/2
(y-1)x^2+(sinθ-ycosθ)x+(y-1)/2=0
判别式=(cosθ^2-2)y^2-(2sinθcosθ-4)y+sinθ^2-2>=0
所以(2-cosθ^2)y^2+(2sinθcosθ-4)y-sinθ^2+2<=0
ymin+ymax=(4-2sinθcosθ)/(2-cosθ^2)

回答3:

把f(x)展开,你自然就会了