已知公差d不为0的等差数列{an}中,a1=1,且a1,a3,a7 成等比数列.(1)求通项an 及前n项和Sn;(2)若

2025-05-14 11:23:23
推荐回答(1个)
回答1:

(1)∵a1,a3,a7 成等比数列,
a32a1a7
即(1+2d)2=a1+6d,
4d2?2d=0,d=

1
2
,或d=0(舍去).
∴数列的通项公式an=1+
1
2
(n?1)=
1
2
n+
1
2

前n项和SnSn
n(1+
1
2
n+
1
2
)
2
1
4
n2+
3
4
n

(2)由(1)得an
n+1
2

an+1
n+2
2

bn
1
anan+1
4
(n+1)(n+2)
=4(
1
n+1
?
1
n+2
)

Tn=4(
1
2
?
1
3
+
1
3
?
1
4
+…+
1
n+1
?
1
n+2
)=4(
1
2
?
1
n+2
)=
2n
n+2