(1)以A为原点,AD,AB,AS为轴建系,并设AB=2,则
S(0,0,2),B(0,2,0),∴SB→=(0,2,-2)
C(2,2,0),M(1,0,1),∴AC→=(2,2,0),AM→=(1,0,1)
设面ACM法向量为n→=(x,y,1),则
2x+2y=0
x+1=0
解得n→=(-1,1,1)
∵SB→·n→=0+2-2=0,∴SB→⊥n→
∴SB∥面ACM
(2)SC→=(2,2,-2)
∵SC→·AM→=2+0-2=0,∴SC⊥AM
∵SC⊥AN,∴SC⊥面AMN,∴面SAC⊥面AMN
(3)易证AS→=(0,0,2)是面ACD的法向量
cos
由图像得二面角D-AC-M馀弦为√3/3