(2014?海淀区二模)已知点E、F分别是正方体ABCD-A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E与C1F

2025-05-11 21:32:35
推荐回答(1个)
回答1:

解:取BB1的中点H,连接FH,则FH∥C1D
连接HE,在D1E上任取一点M,
过M在面D1HE中,作MG平行于HO,
其中O为线段D1E的中点,交D1H于G,
再过G作GN∥FH,交C1F于N,连接MN,
由于GM∥HO,HO∥KB,KB?平面ABCD,
GM?平面ABCD,
所以GM∥平面ABCD,
同理由NG∥FH,可推得NG∥平面ABCD,
由面面平行的判定定理得,平面MNG∥平面ABCD,
则MN∥平面ABCD.
由于M为D1E上任一点,故这样的直线MN有无数条.
故选D.