(1)∵PD⊥底面ABCD∴PD是三棱锥B-PAC的高,∴v= 1 3 ×PD×S△ABC= 1 3 ×3a× 1 2 a×2a=a3(2)存在点F使PB∥平面ACF, PF DF =2连接BD交AC于E,连接EF,AD∥BC,AD=a,BC=2a,所以 AD BC = DE EB = DF PF = 1 2 ,所以PB∥EF又EF?平面ACF,PB不在平面ACF内,所以PB∥平面ACF