先化简啊。
(x)=asin2x/2-√3a(cos2x+1)/2+√3a/2+b =asin(2x-π/3)+b a>0,所以f(x)递减区间和sin一样 所以2kπ+π/2<2x-π/3<2kπ+3π/2 2kπ+5π/6<2x<2kπ+11π/6 kπ+5π/12所以递减区间(kπ+5π/12,kπ+11π/12),k是整数 0<=x<=π/2 -π/3<=2x-π/3<=2π/3 所以-√3/2<=sin(2x-π/3)<=1 所以最大=a+b=√3 最小=-√3a/2+b=-2 a=2,b=√3-2