已知函数f(x)=asinxcosx-根号3acos2x+根号3a⼀2+b(a>0)

写出函数的单调递减区间我知道要化简,但要知道怎样化
2025-05-16 17:43:35
推荐回答(2个)
回答1:

先化简啊。

回答2:

(x)=asin2x/2-√3a(cos2x+1)/2+√3a/2+b
=asin(2x-π/3)+b
a>0,所以f(x)递减区间和sin一样
所以2kπ+π/2<2x-π/3<2kπ+3π/2
2kπ+5π/6<2x<2kπ+11π/6
kπ+5π/12所以递减区间(kπ+5π/12,kπ+11π/12),k是整数

0<=x<=π/2
-π/3<=2x-π/3<=2π/3
所以-√3/2<=sin(2x-π/3)<=1
所以最大=a+b=√3
最小=-√3a/2+b=-2
a=2,b=√3-2