已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.数列{bn}是等比数列,b3=a2+a3,b2b5=128(其中n=1,2

2025-05-10 21:15:29
推荐回答(1个)
回答1:

(I)公差为d,

a1+2d=5
15a1+15×7d=225

a1=1
d=2
故an=2n-1(n=1,2,3,…).
设等比数列bn的公比为q,则
b3=8
b3
q
?b3q2=128
,∴b3=8,q=2
∴bn=b3?qn-3=2n(n=1,2,3,…).
(II)∵cn=(2n-1)?2n∵Tn=2+3?22+5?23+…+(2n-1)?2n
2Tn=22+3?23+5?24+…+(2n-3)?2n+(2n-1)?2n+1
作差:-Tn=2+23+24+25+…+2n+1-(2n-1)?2n+1
=2+
23(1?2n?1)
1?2
?(2n?1)?2n+1

=2+23(2n-1-1)-(2n-1)?2n+1=2+2n+2-8-2n+2n+2n+1=-6-2n+1(2n-3)
∴TN=(2n-3)?2n+1+6(n=1,2,3,…).