(1)由题意可得b1+b2+b3=3b2=15,即b2=5,
又由题意可得(a2+b2)2=(a1+b1)(a3+b3),
设等差数列{bn}的公差为d,
代入数据可得(3+5)2=(1+5-d)(9+5+d),
解之可得d=-10,或d=2,当d=-10不满足bn>0应舍去,
故d=2,bn=5+2(n-2)=2n+1;
(2)可得cn=
=1
bn2?1
=1 (2n+1)2?1
=1 4n(n+1)
(1 4
?1 n
),1 n+1
故数列{cn}的前n项和为:
(1-1 4
+1 2
?1 2
+…+1 3
?1 n
)=1 n+1
(1-1 4
)=1 n+1
n 4(n+1)