初二数学题。。求详细解答最好是手写过程。。谢谢

2025-05-11 09:49:21
推荐回答(4个)
回答1:

(1)证明:连接AH、AF.
∵ABCD是正方形,
∴AD=AB,∠D=∠B=90°.
∵ADHG与ABFE都是矩形,
∴DH=AG,AE=BF,
又∵AG=AE,
∴DH=BF.
在Rt△ADH与Rt△ABF中,
∵AD=AB,∠D=∠B=90°,DH=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.

(2)证明:将△ADH绕点A顺时针旋转90°到△ABM的位置.
在△AMF与△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵MF=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH.

(3)解:设BF=x,GB=y,则FC=1-x,AG=1-y,(0<x<1,0<y<1)
在Rt△GBF中,GF2=BF2+BG2=x2+y2
∵Rt△GBF的周长为1,
∴BF+BG+GF=x+y+根号下(x²+y²)=1
即根号下(x²+y²)=1-(x+y)
即x2+y2=1-2(x+y)+(x+y)2
整理得2xy-2x-2y+1=0
∴xy-x-y=-0.5
∴矩形EPHD的面积S=PH•EP=FC•AG=(1-x)(1-y)=xy-x-y+1=-0.5

 

+1=0.5


∴矩形EPHD的面积是0.5

回答2:

找到原题了,你看看下面这个题

是这个题的话,红色横线上是答案地址,你也可以自己去求解答搜哦,现在我们都在用求解答哦,不会的题都去里面搜了,解答很详细,看不清楚的可以追问哈

回答3:

回答4: