解答:(1)证明:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°
∵∠B′EC=∠DEA,
在△AED和△CEB′中,
∠B′EC=∠DEA ∠B′=∠D B′C=AD
∴△AED≌△CEB′(AAS);
(2)∵△AED≌△CEB′,
∴EA=EC,
∴点E在线段AC的垂直平分线上.
(3)阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3
=22.