一道数学题目!急要答案及步骤!30分钟内!!

2025-05-08 16:13:09
推荐回答(1个)
回答1:

证明:(1)∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∵E是线段AC的中点,

∴∠CBE=∠ABC=30°,AE=CE,

∵AE=CF,

∴CE=CF,

∴∠F=∠CEF,

∵∠F+∠CEF=∠ACB=60°,

∴∠F=30°,

∴∠CBE=∠F,

∴BE=EF;

(2)图2:BE=EF.图3:BE=EF.

图2证明如下:

过点E作EG∥BC,交AB于点G,

∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∴AB=AC,∠ACB=60°,

又∵EG∥BC,

∴∠AGE=∠ABC=60°,

又∵∠BAC=60°,

∴△AGE是等边三角形,

∴AG=AE,

∴BG=CE,

又∵CF=AE,

∴GE=CF,

又∵∠BGE=∠ECF=120°,

∴△BGE≌△ECF(SAS),

∴BE=EF;

图3证明如下:

过点E作EG∥BC交AB延长线于点G,

∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∴AB=AC,∠ACB=60°,

又∵EG∥BC,

∴∠AGE=∠ABC=60°,

又∵∠BAC=60°,

∴△AGE是等边三角形,

∴AG=AE,

∴BG=CE,

又∵CF=AE,

∴GE=CF,

又∵∠BGE=∠ECF=60°,

∴△BGE≌△ECF(SAS),

∴BE=EF.