设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(  ) A.1 B.2 C.4

2025-05-11 23:33:02
推荐回答(1个)
回答1:

设{a n }的前3项为a 1 ,a 2 ,a 3 ,则由等差数列的性质可得a 1 +a 3 =2a 2
∴a 1 +a 2 +a 3 =3a 2 =12,解得a 2 =4,
由题意可得
a 1 + a 3 =8
a 1 a 3 =12
,解得
a 1 =2
a 3 =6
a 1 =6
a 3 =2

∵{a n }是递增等差数列,
∴a 1 =2,a 3 =6,
故选B.