π/4所以-π/2<π/4-a<0所以sin(π/4-a)<0cos(π/4-a)=3/5,由(sin)^2+(cos)^2=1所以sin(π/4-a)=-4/5sin(5π/4+b)=sin(π+π/4+b)=-sin(π/4+b)=-12/13sin(π/4+b)=12/130所以π/4<π/4+b<π/2所以cos(π/4+b)>0所以cos(π/4+b)=5/13sin(a+b)=sin[(π/4+b)-(π/4-a)]=sin(π/4+b)cos(π/4-a)-cos(π/4+b)sin(π/4-a)=(12/13)*(3/5)-(5/13)*(-4/5)=56/65
sin(5π/4+b)= -12/13 =>sin(π+(π/4+b))=-12/13 =>sin(π/4+b)=12/13 =>sin((π/4-a)+(a+b))=12/13 =>sin(π/4-a)cos(a+b)+cos(π/4-a)sin(a+b) 已知cos(π/4-a)=3/5=>sin(π/4-a)=4/5 =>4/5cos(a+b)+3/5sin(a+b)=12/13 又因为cos²(a+b)+sin²(a+b)=1 结果应该很简单了。 下面就自己算吧