设函数f(x)=xe kx (k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)

2025-05-14 12:26:47
推荐回答(1个)
回答1:

(Ⅰ)f′(x)=(1+kx)e kx ,f′(0)=1,f(0)=0,
曲线y=f(x)在点(0,f(0))处的切线方程为y=x;
(Ⅱ)由f′(x)=(1+kx)e kx =0,得x=-
1
k
(k≠0),
若k>0,则当x∈(-∞,-
1
k
)时,
f′(x)<0,函数f(x)单调递减,
当x∈(-
1
k
,+∞,)时,f′(x)>0,
函数f(x)单调递增,
若k<0,则当x∈(-∞,-
1
k
)时,
f′(x)>0,函数f(x)单调递增,
当x∈(-
1
k
,+∞,)时,
f′(x)<0,函数f(x)单调递减;
(Ⅲ)由(Ⅱ)知,若k>0,则当且仅当-
1
k
≤-1,
即k≤1时,函数f(x)(-1,1)内单调递增,
若k<0,则当且仅当-
1
k
≥1,
即k≥-1时,函数f(x)(-1,1)内单调递增,
综上可知,函数f(x)(-1,1)内单调递增时,
k的取值范围是[-1,0)∪(0,1].