(1)证明:当n≥2时,3tSn-(2t+3)Sn-1=3t,3tSn+1-(2t+3)Sn=3t,
∴3tan+1-(2t+3)an=0,
∵t>0且是常数,∴
=an+1 an
,2t+3 3t
∴数列{an}(n∈N*)是公比为
的等比数列;2t+3 3t
(2)解:由(1)可知:f(t)=
=2t+3 3t
+1 t
(t>0).2 3
∵数列{bn}满足b1=1,bn=f(
),1 bn?1
∴bn=bn?1+
(n≥2),2 3
∴数列{bn}是公差为
的等差数列,2 3
∴bn=1+
(n?1)=2 3
.2n+1 3
∴cn=b2n-1b2n-b2nb2n+1=
×4n?1 3
?4n+1 3
×4n+1 3
=-4n+3 3
n?16 9
.4 9
∴数列{cn}是等差数列,公差为?
,首项为?16 9
.20 9
∴Tn=?
n+20 9
×(?n(n?1) 2
)=?16 9
n2?8 9
.4 3
(3)∵当n∈N*时,不等式Tn≤a恒成立,
∴a≥(Tn)max,对?n∈N*,
而Tn=?
n2?8 9
≤T1=?4 3
?8 9
=?4 3
.20 9
∴