设无穷数列{an}的首项a1=1,前n项和为Sn(n∈N*),且3tSn-(2t+3)Sn-1=3t(n∈N*,n≥2)(t是与n无关

2025-05-10 08:50:13
推荐回答(1个)
回答1:

(1)证明:当n≥2时,3tSn-(2t+3)Sn-1=3t,3tSn+1-(2t+3)Sn=3t,
∴3tan+1-(2t+3)an=0,
∵t>0且是常数,∴

an+1
an
2t+3
3t

∴数列{an}(n∈N*)是公比为
2t+3
3t
的等比数列;
(2)解:由(1)可知:f(t)=
2t+3
3t
=
1
t
+
2
3
(t>0).
∵数列{bn}满足b1=1,bn=f(
1
bn?1
),
bnbn?1+
2
3
(n≥2),
∴数列{bn}是公差为
2
3
的等差数列,
∴bn=1+
2
3
(n?1)
=
2n+1
3

∴cn=b2n-1b2n-b2nb2n+1=
4n?1
3
×
4n+1
3
?
4n+1
3
×
4n+3
3
=-
16
9
n?
4
9

∴数列{cn}是等差数列,公差为?
16
9
,首项为?
20
9

∴Tn=?
20
9
n+
n(n?1)
2
×(?
16
9
)
=?
8
9
n2?
4
3

(3)∵当n∈N*时,不等式Tn≤a恒成立,
∴a≥(Tnmax,对?n∈N*
Tn=?
8
9
n2?
4
3
≤T1=?
8
9
?
4
3
=?
20
9