解答:(本小题满分12分)
解:(Ⅰ)由题得BF2=2OF2,即a=2c,
∴e=
…(4分)1 2
(Ⅱ)设P(x1,y1),Q(x2,y2),直线PQ方程:x=ty+c,
联立
,
x=ty+c
b2x2+a2y2=a2b2
得(a2+b2t2)y2+2b2cty-b4=0,
∴y1+y2=?
,y1y2=?2b2ct
a2+b2t2
…(7分)S=b4
a2+b2t2
?2c?|y1?y2|=c1 2
=
+4b4c2t2
(a2+b2t2)2
4b4
a2+b2t2
,2ab2c
1+t2
a2+b2t2
令u=
≥1,S=
1+t2
=2ab2cu
a2+b2(u2?1)
≤2ab2c
+b2uc2 u
=b2,2ab2c a2
其中等号成立时u=1,
∴b2=6,a2=8,
∴椭圆C的方程为
+x2 8
=1.…(12分)y2 16