解答:解:(1)∵Sn=n2-4n,∴n≥2时,an=Sn-Sn-1=(n2-4n)-[(n-1)2-4(n-1)]=2n-5,n=1时,a1=S1=1-4=-3,满足上式,∴an=2n-5.(2)∵an=2n-5,∴数列{an}是首项为-3,公差为2的等差数列,∴Sn=-3n+n(n-1)2×2=n2-4n=(n-2)2-4,∴n=2时,Sn取最小值S2=-4.∴数列{an}的前2项和最小.