如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60° (Ⅱ)若AB=C

2025-05-11 18:43:00
推荐回答(1个)
回答1:

(I)过A1作A1D⊥AB交AB于D,连接CD

因AB=AA1,∠BAA1=60°

易知⊿ABA1为正三角形

则AA1=BA1

所以A1D为AB边的中线,即D为AB中点(三线合一)

又CA=CB,表明⊿ACB为等腰三角形

则CD为AB边上的高,即CD⊥AB(三线合一)

 

因AB⊥A1D,且AB⊥CD

而A1D交CD于平面A1CD

则AB⊥平面A1CD

而A1C⊂平面A1CD

所以AB⊥A1C

 

(I)连接BC1、CB1交于O,连接A1O

过A1作A1H⊥CB1交CB1于H

因CA=CB=AB=AA1(即三棱柱所有棱长相等)

易知四边形BB1C1C为菱形

则BC1⊥CB1

 

又⊿ABA1为正三角形

则A1B=AB=A1C1

由此知⊿BA1C1为等腰三角形

易知BC1⊥A1O(三线合一)

 

又CB1交A1O于平面A1CB1

则BC1⊥平面A1CB1

而A1H⊂平面A1CB1

则A1H⊥BC1

 

又A1H⊥CB1

而BC1交CB1于平面BB1C1C

则A1H⊥平面BB1C1C

由此表明∠A1CH即为A1C与平面BB1C1C所成角的平面角

 

因平面ABC⊥平面AA1B1B

且A1D⊥AB

且A1D⊂平面AA1B1B

且AB为平面ABC与平面AA1B1B的交线

则A1D⊥平面ABC

而CD⊂平面ABC

则A1D⊥CD

表明⊿A1DC为RT⊿

又易知⊿ABA1、⊿ABC均为边长相等的全等正三角形

且D为AB的中点

则A1D=CD

表明RT⊿A1DC为等腰直角三角形

在RT⊿A1DC中,易知A1D=CD=√3

则A1C=√6

 


由(I)知AB⊥A1C

而A1B1//AB

则A1B1⊥A1C

表明⊿A1CB1为RT⊿

由勾股定理知CB1=√10

又A1H⊥CB1

则易知RT⊿A1CB1∽RT⊿A1HB1

于是A1H=A1C*A1B1/CB1=2√15/5

 

在RT⊿A1CH中

由三角函数定义知sin∠A1CH=A1H/A1C=√10/5