(Ⅰ)证明:∵ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,∴PD⊥AC,
∵PD∩BD=D,∴AC⊥平面PBD,
∵AC?平面ACE,∴平面ACE⊥平面PBD.
(Ⅱ)解:设AC∩BD=0,连结OE,
由(Ⅰ)知AC⊥平面PBD于O,
∴∠AEO为AE与平面PDB所成的角,
∵O,E分别为DB,PB的中点,∴OE∥PD,OE=
PD,1 2
又∵PD⊥底面ABCD,
∴OE⊥平面ABCD,CE⊥AO,
则Rt△AOE中,OE=
PD=1 2
AB=A0,
2
2
∴∠AOE=45°,即AE与平面PDB所成的角的大小为45°.
(Ⅲ)解:∵AC⊥平面PBD,∴△ABD为△ABD在平面PDB内的射影图形,
二面角A-PB-D的余弦值
∴cosθ=
=S△OBP S△ABP
=
×1 2
×
2
2
2
×1×1 2
3
,
3
3
则二面角A-PB-D的正弦值sinθ=