(1)证明:连接OD,∵AO=BO,点D是BC的中点∴OD∥AC,OD= 1 2 AC∵ED⊥AC,∴ED⊥OD又∵AB=AC,∴OD= 1 2 AB=BO∴DE是⊙O的切线.(2)解:连接AD∵AB=AC,D是BC的中点,∴AD⊥BC∵AB:BC=3:4,∴AC:CD=3:2∴设CD=2k,AC=3k,∴AD= 5 k∴sinC= AD AC = 5 3