证明:(1)连接OC.∵OC=OB,∴∠ABC=∠OCB,又∵∠EBC=∠ABC,∴∠OCB=∠EBC,∴OC∥BE,∵BE⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴直角△ABC中,BC=AB?sinA=4× 3 2 =2 3 ,∠ABC=30°∴在直角△CBE中,∠CBE=∠ABC=30°,CE= 1 2 BC= 3 .