在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,AA1=2a,A1C=CA=AB=a,AB⊥AC,D为AA1的中点.(I)求证:C

2025-05-07 11:34:11
推荐回答(1个)
回答1:

解答:(Ⅰ)证明:∵侧面ACC1A1⊥面ABC,AB⊥AC,∴AB⊥平面ACC1A1
又CD?面ACC1A1∴AB⊥CD,
又A1C=CA,D为AA1的中点,∴CD⊥AA1
由AB⊥CD,CD⊥AA1,AB∩AA1=A,
∴CD⊥平面ABB1A1
(Ⅱ)解:∵AA1=

2
a,A1C=CA=a,∴A1C⊥AC,又侧面ACC1A1⊥面ABC,∴A1C⊥面ABC
在平面ABC内,过C点作AC的垂线为y轴,AC为x轴,A1C为z轴建立如图所示空间坐标系.

不妨取a=1,其则A(1,0,0),B(1,1,0),A1(0,0,1),C1(-1,0,1),B1(0,1,1)
E(
1
2
,1,
1
2
)
A1C1
=(?1,0,0);
A1E
=(
1
2
,1,?
1
2
)

设面A1C1E的法向量为
n
=(x,y,z)

n
?
A1C1
=0
n
?
A1E
=0
?
?x=0
1
2
x+y?
1
2
z=0
,取z=2,得y=1,∴
n
=(0,1,2)

又面ACA1C1法向量为
AB
=(0,1,0)

则二面角的余弦为cosθ=
|
n
?
AB
|
|
n
||
AB
|
1
5
5
5