解答:(Ⅰ)证明:∵侧面ACC1A1⊥面ABC,AB⊥AC,∴AB⊥平面ACC1A1,
又CD?面ACC1A1∴AB⊥CD,
又A1C=CA,D为AA1的中点,∴CD⊥AA1,
由AB⊥CD,CD⊥AA1,AB∩AA1=A,
∴CD⊥平面ABB1A1.
(Ⅱ)解:∵AA1=
a,A1C=CA=a,∴A1C⊥AC,又侧面ACC1A1⊥面ABC,∴A1C⊥面ABC
2
在平面ABC内,过C点作AC的垂线为y轴,AC为x轴,A1C为z轴建立如图所示空间坐标系.
不妨取a=1,其则A(1,0,0),B(1,1,0),A1(0,0,1),C1(-1,0,1),B1(0,1,1)
E(
,1,1 2
),1 2
=(?1,0,0);
A1C1
=(
A1E
,1,?1 2
),1 2
设面A1C1E的法向量为
=(x,y,z),n
由
?
?n
=0
A1C1
?n
=0
A1E
,取z=2,得y=1,∴
?x=0
x+y?1 2
z=01 2
=(0,1,2),n
又面ACA1C1法向量为
=(0,1,0),AB
则二面角的余弦为cosθ=
=|
?n
|AB |
||n
|AB
=1
5
.
5
5