已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,

2025-05-06 18:47:44
推荐回答(1个)
回答1:

解答:解:(1)证明:∵该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,∴BA,BC,BB1两两互相垂直.
∵BC∥B1C1,B1C1?平面C1B1N,BC?平面C1B1N,
∴BC∥平面C1B1N…(4分)
(2)连BN,过N作NM⊥BB1,垂足为M,
∵B1C1⊥平面ABB1N,BN?平面ABB1N,
∴B1C1⊥BN,…(5分)
由三视图知,BC=4,AB=4,BM=AN=4,BA⊥AN,
∴BN=

42+42
=4
2
,B1N=
NM2+B1M2
=
42+42
=4
2
,…(6分)
∵BB1=82=64,B1N2+BN2=32+32=64,
∴BN⊥B1N,…(7分)
∵B1C1?平面B1C1N,B1N?平面B1C1N,B1N∩B1C1=B1
∴BN⊥平面C1B1N        …(9分)
(3)连接CN,
VC-BAN=
1
3
×BC?S△ABN=
1
3
×4×
1
2
×4×4=
32
3
…(11分)
∴平面B1C1CB⊥ANB1B=BB1,NM⊥BB1,NM?平面B1C1CB,
∴NM⊥平面B1C1CB,
V N?B1C1CB=
1
3
×NM?S 矩形B1C1CB=
1
3
×4×4×8=
128
3
…(13分)
此几何体的体积V=VC-BAN+V N?B1C1CB=
32
3
+
64
3
=32;
V=VC-BAN+V N?B1C1CB=
32
3
+
128
3
=
160
3
…(14分)