所谓的大数据平台不是独立存在的,比如百度是依赖搜索引擎获得大数据并开展业务的,阿里是通过电子商务交易获得大数据并开展业务的,腾讯是通过社交获得大数据并开始业务的,所以说大数据平台不是独立存在的,重点是如何搜集和沉淀数据,如何分析数据并挖掘数据的价值。
我可能还不够资格回答这个问题,没有经历过一个公司大数据平台从无到有到复杂的过程。不过说说看法吧,也算是梳理一下想法找找喷。
这是个需求驱动的过程。
曾经听过spotify的分享,印象很深的是,他们分享说,他们的hadoop集群第一次故障是因为,机器放在靠窗的地方,太阳晒了当机了(笑)。从简单的没有机房放在自家窗前的集群到一直到现在复杂的数据平台,这是一个不断演进的过程。
对小公司来说,大概自己找一两台机器架个集群算算,也算是大数据平台了。在初创阶段,数据量会很小,不需要多大的规模。这时候组件选择也很随意,Hadoop一套,任务调度用脚本或者轻量的框架比如luigi之类的,数据分析可能hive还不如导入RMDB快。监控和部署也许都没时间整理,用脚本或者轻量的监控,大约是没有ganglia、nagios,puppet什么的。这个阶段也许算是技术积累,用传统手段还是真大数据平台都是两可的事情,但是为了今后的扩展性,这时候上Hadoop也许是不错的选择。
当进入高速发展期,也许扩容会跟不上计划,不少公司可能会迁移平台到云上,比如AWS阿里云什么的。小规模高速发展的平台,这种方式应该是经济实惠的,省了运维和管理的成本,扩容比较省心。要解决的是选择平台本身提供的服务,计算成本,打通数据出入的通道。整个数据平台本身如果走这条路,可能就已经基本成型了。走这条路的比较有名的应该是netflix。
作者:徐晓鹏
链接:https://www.zhihu.com/question/37627092/answer/74278297
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
目前国内外的分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等。 先说下使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方)。2)开源组件一般免费,学习和维护相对方便。3)开源组件一般会持续更新,提供必要的更新服务『当然还需要手动做更新操作』。4)因为代码开源,若出bug可自由对源码作修改维护。 再简略讲讲各组件的功能。分布式集群的资源管理器一般用Yarn,『全名是Yet Another Resource Negotiator』。常用的分布式数据数据『仓』库有Hive、Hbase。Hive可以用SQL查询『但效率略低』,Hbase可以快速『近实时』读取行。外部数据库导入导出需要用到Sqoop。Sqoop将数据从Oracle、MySQL等传统数据库导入Hive或Hbase。Zookeeper是提供数据同步服务,Yarn和Hbase需要它的支持。Impala是对hive的一个补充,可以实现高效的SQL查询。ElasticSearch是一个分布式的搜索引擎。针对分析,目前最火的是Spark『此处忽略其他,如基础的MapReduce 和 Flink』。Spark在core上面有ML lib,Spark Streaming、Spark QL和GraphX等库,可以满足几乎所有常见数据分析需求。 值得一提的是,上面提到的组件,如何将其有机结合起来,完成某个任务,不是一个简单的工作,可能会非常耗时。