证明:∵E为CD中点∴ED=EC又∵∠D=∠BCE,AD=BC∴△ADE≌△BCE∴AE=BE∵FG‖AB∴EG/EA=EF/EB∴AG/AE=BF/BE又∵AE=BE∴AG=BF∵BF⊥AC,∠ABC=90°∴BF²=AF×CF∴AG²=AF×FC