(1)
A(a²/4, a), B(b²/4, b), D(a²/4, -a)
AB: y - 0 = k(x + 1), x = y/k - 1
y² = 4(y/k - 1), ky² - 4y + 4k = 0
ab = 4, a + b = 4/k
BD: (y + a)/(b + a) = (x - a²/4)/(b²/4 - a²/4)
y + a = (4x - a²)/(b - a)
令y = 0, ab - a² = 4x - a²
x = ab/4 = 1, 即与x轴的交点为F(1, 0)
(2)
FA=(a²/4 - 1, a), FB = (b²/4 - 1, b)
FA·FB = a²b²/16 - (a² + b²)/4 + 1 + ab
= 16/16 - [(a + b)² - 2ab]/4 + 1 + 4
= 8 - 4/k² = 8/9
k² = 9/16
k = 3/4 或 k = -3/4
A和D关于x轴对称, 那么KA和KD关于x轴对称, 即x轴为∠BKD的平分线, 于是内切圆的圆心在x轴上,令其为M(m, 0)
根据对称性,不影响结果,不妨取k > 0且a > b > 0
y = (3/4)(x + 1), 与抛物线的交点为A((23+√7)/9, 2(4+√7)/3), D((23+√7)/9, -2(4+√7)/3), B((23-√7)/9, 2(4-√7)/3)
这样可以BD的方程,令M与AB和BD的距离相等即可解出m, 但做起来似乎很繁。