y=x^3导数为y=3x^2,直线与其切点为(m,m^3)
则直线过(m,m^3),(1,0)
求得直线为y=0或者y=27/4*(x-1)
若y=0.则y=ax^2+15/4x-9顶点在x轴
得a=-25/64
若y=27/4*(x-1),斜率为27/4
y=ax^2+15/4x-9导数为y=2ax+15/4,
直线与其切点为(n,an^2+15/4n-9)
2an+15/4=27/4
n=3/(2a)
直线过(3/2,27/8),(1,0) (3/(2a),(63-72a)/8a)
推出a=-1
所以a=-25/64或者a=-1
sin^2a+cos^2a=1,得sin^2a=4/5
f(x)=(1+1/tanx)sin^2-2sin(x+π/4)sin(x-π/4).
=sinx(cosx+sinx)+2sin(x+π/4)cos(x+π/4)
=1/2sin2x+sin^2x+sin(2x+π/2)
=1/2sin2x+1/2-1/2cos2x+cos2x
=(sin2x+cos2x+1)/2
tana=sina/cosa=2,所以sin^2a=4cos^2a,即1-cos2a=4*(1+cos2a)得cos2a=-3/5
sin2a=2sinacosa/(sin^2a+cos^2a)=2tana/(tan^2a+1)=4/5
所以f(a) =1/2*(4/5-3/5+1)=3/5
1,对y=x^3求导,得到斜率K=3*1=3 再对y=ax^2+15/4x-9求导,可得2a+15/4=3,所以a=-3/82,f(x)=sin^2 x+sinxcosx-0,5sin^2 x+0.5cos^2 x,除以1(sin^2 x+cos^2 x)得(0,5tan^2 x+0.5+tanx)/(tan^2 x+1)把tan a=2代入上式,得f(a)=0,9希望能帮到楼主!
f(x)=(1+cotx)sin^2(x)-2sin(x+∏/4)sin(x-∏/4) =sin^2(x)+sinxcosx+cos2x =1/2(1-cos2x)+sinxcosx+cos2x =1/2(sin2x+cos2x)+1/2 sin2x=2tanx/(1+tanxtanx) cos2x=(1-tanxtanx)/(1+tanxtanx) 当tana=2,则sin2a=4/5,cos2x=-3/5 所以f(a)=1/2*(4/5-3/5)+1/2=3/5