x∈(0,+∞)且x^2+y^2/2=1.
故依基本不等式得:
x√(1+y^2)
=√2·√[x^2·(1/2+y^2/2)]
≤√2·(x^2+y^2/2+1/2)/2
=√2·(1+1/2)/2
=(3√2)/4.
故所求最大值为:(3√2)/4。
用三角代换法也可:
设x=cosθ,y=√2sinθ,则
x√(1+y^2)
=cosθ·√[1+2(sinθ)^2]
=√2·√[(cosθ)^2·(1/2+(sinθ)^2)]
≤√2·[(sinθ)^2+(cosθ)^2+1/2]/2
=√2·(1+1/2)/2
=(3√2)/4.
故所求最大值为:(3√2)/4。